This PDF Content is made available by SEPM—Society for Sedimentary Geology for non-commercial use. This file does contain security features to prevent changing, copying items or printing the document. Additional restrictions and information can be found below.

Connect to other SEPM publications below.
- www.sepm.org to learn more about the Society, membership, conferences and other publications
- www.sepm.org/bookstore/storehome.htm for purchase other SEPM Book Publications.
- www.sepmonline.org to access both Book and Journals online.

Copyright not claimed on content prepared by wholly by U.S. government employees within scope of their employment.

Individual scientists are granted permission, without fees or further requests to SEPM, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works.

To make unlimited copies of items in SEPM publications for noncommercial use in classrooms to further education and science without fees please contact SEPM.

This file may not be posted to any other Web site.

SEPM provides this and other forums for the presentation for the of diverse opinions and positions by scientists globally. Ideas in this publications do not necessarily reflect the official position of the Society.
CONTROLS ON CYCLOSTRATIGRAPHY OF LOWER CRETACEOUS CARBONATES AND EVAPORITES, CUPIDO AND COAHUILA PLATFORMS, NORTHEASTERN MEXICO

CHRISTOPH LEHMANN1, DAVID A. OSLEGER2, AND ISABEL P. MONTAÑEZ2

1 Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A.
2 Department of Geology, University of California, Davis, California 95616, U.S.A.

*Present address: Amoco Exploration and Production, 501 Westlake Park Boulevard, Houston, Texas 77079-2696, U.S.A.

ABSTRACT: The Lower Cretaceous Cupido (Barremian–Aptian) and Coahuila (Albian) carbonate platforms of northeastern Mexico exhibit thick successions of meter-scale cycles deposited in three unique paleoenvironmental settings. (1) The Cupido shelf lagoon is composed of peritidal carbonate cycles deposited in the protected lee of a reef-rimmed to barrier-shoal margin. (2) The restricted Coahuila ramp interior consists of cyclic alternations of subtidal evaporites and peritidal carbonates. (3) The deep-water parts of both the Cupido and Coahuila platforms are composed of foraminiferal wackestones and lime mudstones interspersed with firmgrounds and hardgrounds in a “cyclic” arrangement. Vertical successions of meter-scale evaporitic cycles and peritidal cycles exhibit systematic stacking patterns that build into intermediate-scale high-frequency sequences (tens to hundreds of meters thick), and large-scale composite sequences (hundreds of meters thick) that can be correlated across the Cupido and Coahuila platforms. These large-scale stacking patterns are interpreted to reflect long-term accommodation events and, when combined with the scale-independent architecture of all genetic units, permit the inference that all three meter-scale cycle types on the Cupido and Coahuila platforms are also governed by relative sea-level change.

The composition, thickness, and number of meter-scale cycles within individual high-frequency sequences can be highly variable across the Cupido and Coahuila platforms, however, even though the overall upward-shallowing patterns are evident. The lateral complexity of cycle architecture and distribution is interpreted to be a natural response to fluctuations in regional climate interacting with autogenic processes such as variations in carbonate production and dispersal, intensity and frequency of tropical storms and monsoons, thermohaline circulation patterns, and ambient ocean chemistry and temperature. These interacting processes created laterally variable physiographic and oceanographic conditions across the Cupido and Coahuila platforms, complicating the sedimentary record generated by the composite sea-level signal.

Well-documented evidence from Barremian–Cenomanian pelagic cycles throughout the Tethyan seaway strongly indicates that Milankovitch-driven climatic changes operated during the Early Cretaceous. Contemporaneous shallow-marine cyclicity in several locations suggests that these climatic changes may have had globally widespread effects. In an effort to link the shallow-water and deep-water realms, we propose a model whereby Milankovitch-driven global climatic changes generated low-amplitude, high-frequency eustatic fluctuations through some combination of thermal expansion and contraction of ocean water, waxing and waning of small ice caps and alpine glaciers, and changes in the storage capacity of aquifers and lakes to produce meter-scale cycles across Lower Cretaceous shallow-marine platforms.

INTRODUCTION

Cretaceous cyclostratigraphic cyclicity is recorded in a variety of depositional and tectonic settings, from pelagic settings (e.g., de Boer 1982; Herbert and Fischer 1986; Park and Oglesby 1991), foreland basins (e.g., Kaufman 1977; Elder et al. 1994; Sethi and Leithold 1994; Sageman et al. 1997), and shallow carbonate platforms (e.g., Minero 1988; Strasser 1988; Goldhammer et al. 1991; Grötsch 1996; Röhl and Ogg 1996). The mechanisms behind development of Cretaceous deep-water cycles have commonly been linked to climatic changes driven by orbital variations in the Milankovitch frequency band. These climatic changes generated variations in ocean-surface productivity, ocean-bottom redox conditions, thermohaline circulation patterns, and nutrient flux from the continents. In contrast, most cyclostratigraphic studies of Cretaceous shallow-marine successions suggest that the prevailing control on stratigraphic cyclicity is eustasy, perhaps in concert with regional climate change. Consequently, Cretaceous deep-water and shallow-water settings have been viewed as decoupled systems, a perspective that seems unlikely given the connections apparent in today’s oceans.

The Lower Cretaceous Cupido and Coahuila carbonate platforms of northeastern Mexico (Fig. 1) exhibit meter-scale cycles deposited in three distinct paleoenvironmental settings: restricted evaporitic lagoon, peritidal shelf-lagoon, and low-energy deep platform. The intent of this paper is to (1) illustrate the various architectural arrangements of lithofacies within meter-scale cycles of the Cupido and Coahuila platforms, (2) evaluate potential controls to determine if the three cycle types were generated by processes unique to their depositional settings, or whether these cycles were formed by a single common mechanism, and (3) compare these shallow-marine cycles from northeastern Mexico with coeval Cretaceous deep-water cycles from elsewhere in the Tethyan seaway to assess potential connections and larger-scale controlling mechanisms.

PREVIOUS WORK AND METHODS

Regionally comprehensive sedimentologic or sequence stratigraphic studies have not been undertaken on the Cupido and Coahuila carbonate platforms since the component formations were originally described in lithostratigraphic and biostratigraphic terms (Burrows 1909; Boët 1927; Millay 1936, 1937, 1938, 1944a, 1944b; Kelly 1936; Kellum et al. 1936; Humphrey 1949; Humphrey and Diaz 1956, unpublished work). More recent investigations have focused on individual parts of the platforms exposed in isolated mountain ranges in the area (de Cserna 1956; Fuentes 1964; Krutak 1967; Bishop 1970; Blossom 1972; Garza 1973; Charleston 1974; Wilbert 1976; Conklin and Moore 1977; Wilson and Pialli 1977; Longoria and Gamper 1977; Elliot 1979; Ross 1981; Longoria 1984; Wilson et al. 1984; Tinker 1985; Cantú Chapa et al. 1985; Kindred 1988; Cantwell and Ward 1990; Longoria and Monreal 1991; Morán- Zenteno 1994). Recently, a broad-scale sequence stratigraphic framework was proposed by Goldhammer et al. (1991) for the upper part of the Cupido Formation and Wilson and Ward (1993) synthesized large-scale depositional patterns of the Cupido and Coahuila carbonate platforms, as well as coeval platforms of east-central Mexico.

In this study, 37 sections totaling 17,000 m were logged on a decimeter scale throughout the > 80,000 km² study area (Fig. 2). Sections composed of evaporitic interior facies, shallow shelf-lagoon facies, and high-energy shoal-margin facies were measured on the Coahuila block (including the Sierra de la Peña), in the northern part of the Sierra de Parras, and in the Sierra de Jimulco. Sections composed of deep-platform facies were measured in the southern part of the Sierra de Parras, in the eastern Sierra Madre Oriental, and in isolated mountain ranges east and north of the Sierra de Pala. Hand samples were collected at 10–20 m intervals at selected platform-margin and platform-interior sections and at 5–10 m intervals at
ceous carbonates and shales of the La Penäa Formation. Peak ¯ooding led to the retrograde backstep of the Cupido platform and eventual shallow-marine shelf developed around the emergent Coahuila granodioritic belt. Rectangle outlines the study area. M = Monterrey, S = Saltillo, T = Torreon, PR = Poza Rica, SA = San Antonio.

selected deep-platform sections for petrographic study of individual lithofacies.

TECTONIC, STRATIGRAPHIC, AND CLIMATIC SETTING

The Cupido and Coahuila carbonate platforms of northeastern Mexico were part of an extensive carbonate system that rimmed the ancestral Gulf of Mexico during the Early Cretaceous. These two platforms span Barremian through Albian time and are contemporaneous with the Sligo and Comanche shelves in Texas and the Valles and Golden Lane platforms in Mexico (Fig. 1; Wilson 1975). The Barremian to Aptian Cupido shallow-marine shelf developed around the emergent Cupido platform and eventually shallow-marine deposition on the Cupido block (Fig. 3; Lehmann 1997). Peak flooding during the mid- to late Aptian is marked by the deposition of argillaceous carbonates and shales of the La Peña Formation.

The Albian Coahuila inner ramp and ramp crest developed on top of and around the Coahuila block, a position reflecting significant backstep from the Barremian to Aptian Cupido shelf margin (Figs. 3, 4B). Evaporites and carbonates of the Acatita Formation were deposited in the restricted interior of the ramp, while the time-equivalent Upper Tamaulipas Formation was deposited in deeper parts of the outer ramp. Albian shallow-subtidal carbonates of the Aurora Formation form the ramp-crest barrier and ultimately bury Acatita mixed evaporites and carbonates (Fig. 3). The Coahuila platform was flooded and ultimately drowned during latest Albian and Cenomanian time with the deposition of hemipelagic mudstones and deep-water laminites of the Somberretillo and Cuesta del Cura Formations. The termination of shallow-marine carbonate deposition on the Coahuila platform likely corresponds with the worldwide drowning of carbonate platforms during the Rotalipora appenninica time interval (Grötsch et al. 1993; Vahrenkamp et al. 1993; Sliter 1995; Lehmann 1997).

The Cupido and Coahuila carbonate platforms developed during peak Cretaceous greenhouse climatic conditions (Barron 1983). Regionally, evaporites and sabkha carbonates of the Cupido and Coahuila platforms indicate arid to semiarid conditions in northeastern Mexico from Barremian to Albian time. Coeval evaporites are common around the northwestern Gulf of Mexico (e.g., the La Virgen of the Sabinas basin, the Ferry Lake of the northern Gulf coast, the Kirschberg of the Comanche shelf, the McKnight of the Maverick basin, as well as evaporites deposited in the interior of the Valles and Golden Lane platforms; Wilson and Ward 1993; McFarlan and Menes 1991).

The latitudinal temperature gradient in the oceans was flat during the Cretaceous (Barron 1983); presumably high ocean-water temperatures characterized the poles, and the water column was stratified. Evidence for warm temperatures in the Cretaceous oceans has been determined from oxygen isotopes of planktonic foraminifera (Huber et al. 1995). Contrary to these data, however, are recalculated paleotemperatures from foraminifers (Sellwood et al. 1994) and belemnites (Pirrie et al. 1995) which suggest that Cretaceous ocean surface temperatures were cooler.

Warm climates prevailed through the Cretaceous, and major polar glaciations were probably absent (Frakes and Franes 1988), although Weisert and Lini (1991) have suggested that small ice caps may have been present during the mid-Cretaceous. Global surface temperatures are estimated to have been at least 6°C higher than at present (Barron et al. 1995), perhaps because atmospheric P CO2 exceeded present-day values by two to ten times (Cerling 1991; Freeman and Hayes 1992; Berner 1994). Furthermore, the symmetrical arrangement of large landmasses around the equatorial Tethys ocean favored strong monsoonal seasonality (Parrish 1993; Jacobs and Sahagian 1995).

FACIES ASSOCIATIONS AND STRATIGRAPHIC CYCLICITY

Three unique facies associations comprise the Cupido and Coahuila platforms and represent deposition in distinct environmental settings: restricted ramp interior, peritidal shelf lagoon, and open deep platform. Interbedded evaporites and carbonates characterize a restricted lagoon located in the interior of the Coahuila ramp (Fig. 4B). Shallow subtidal and peritidal lithofacies characterize the broad shelf lagoon of the Cupido platform (Fig. 4A). Shelf-lagoon facies are interpreted to have formed in the lee of a shelf margin that changed character from a discontinuous coral±rudist reef flanking the east margin near Monterrey to a high-energy grainstone shoal fronting the south margin near Parras. The deeper, lower-energy parts of both platforms are characterized by hemipelagic mudstones and wackestones exhibiting numerous hardgrounds and firmgrounds.

Lithofacies constituting the three facies associations are typically arranged into upward-shallowing “meter-scale cycles”. In turn, evaporitic and peritidal cycles systematically stack into “high-frequency sequences”, which in turn are the building blocks of large-scale “composite sequenc-es”. This terminology is adapted from Mitchum and Van Wagoner (1991) and is used for the sequence stratigraphic framework of the Cupido and Coahuila platforms developed by Lehmann (1997). Meter-scale cycles,
Fig. 2.—Location map of measured sections and mountain ranges with Lower Cretaceous exposures. Sections are indicated by filled circles. Ranges constituting the Coahuila block include the Sierra Acatita, Sierra Los Alamitos, and Sierra de Paiba. AC = Agua Chica, CAT = Cañón Taraises, CAV = Cañón Viibora, CC = Cañón del Chorro, CCT = Casa Colorado, CDC = Casa Corazon del Toro, CDP = Cañón de Cobra, CH = Cañón de Huasteca, CIP = Cañón de Juan Pérez, CP = Cerro Prieto, CT = Cerro de Tunal, CV = Chile Verde, ER = El Rayo, GA = Garambullo, LC = La Casita, LC = La Concordia, LM = Las Margaritas, PC = Potrero Chico, PG = Potrero García, RA = Rayones, SA = west side Sierra Acatita, SAB = Sabanilla, SC = west side Sierra Cabrera, SE = Sierra Escondida, SF = Sierra La Fragua, SG = Sierra de La Gavia, SLA = north side Sierra Los Alamitos, SLP = Sierra de la Peña, SO = Sombreretillo, SPE = Sombrero, SPM = Sierra de Parras, east side, SSM = Sierra San Marcos y Pinos, SR = Cañón de Santa Rosa, SV = Sierra Venado, TN = Tanque Nuevo, TNN = Tanque Nuevo, north.

Fig. 3.—Chronostratigraphic interpretation for Barremian to Albian strata of this study (from Lehmann 1997). Chart illustrates temporal relationships between the Coahuila block to the northwest and the Sierra de Parras to the south–southeast. Note that the Las Uvas Formation and the overlying carbonates of the lower Acatita Formation are coeval with the upper transgressive part of the Cupido Formation (‘‘Cupidito’’ facies).
high-frequency sequences, composite sequences, and their disconformable bounding surfaces are interpreted to be unique chronostratigraphic entities that developed through individual cycles of accommodation change. The internal architecture of each of these genetic units consists of facies associations that are interpreted to have migrated across the platform in a predictable retrogradational, to aggradational, to progradational pattern, with the exact proportions determined by the form and magnitude of accommodation events. In the following sections, the arrangement of lithofacies into meter-scale cycles, interpretations of depositional environments, and larger-scale cycle stacking patterns are discussed for each of the three palaeoenvironmental settings on the Cupido and Coahuila platforms.

Coahuila Evaporitic Ramp Interior

Carbonate and evaporite lithofacies of the Coahuila ramp interior (Acatita Formation; Table 1) are exposed in the Sierra de Paila, Sierra Los Alamitos, Sierra Acatita, and Sierra de la Peña (Figs. 2, 4B). Different thicknesses of the evaporites throughout the region (200–500 m, with the greatest thickness centered around the Sierra Acatita) suggest variable degrees of restriction of a metahaline lagoon bounded to seaward by a high-energy ramp-crest barrier. The ramp crest is exposed in only two sections composed dominantly of cross-bedded, shallow-subtidal grainstones without evaporites (Casa Colorado, Cañon de los Perdidos). The facies in these two sections are interpreted to be a high-energy shoal that isolated the Coahuila ramp interior from open-marine conditions, permitting the accumulation of thick successions of evaporitic facies. Indirect evidence for a high-energy ramp-crest shoal is the presence of skeletal packstones/grainstones both beneath and above Acatita evaporitic facies on the Coahuila block, suggesting that similar high-energy carbonates may have constituted the barrier margin contemporaneously with evaporite deposition (Fig. 3). The rest of the ramp-crest barrier is likely buried beneath Upper Cretaceous strata of the Parras foreland basin.

Lithofacies within the interior of the Coahuila platform are repetitively arranged into meter-scale cycles. Cycle thickness varies from 1 to 20 m and averages 7.8 m (total of 220 measured cycles). Within individual cycles, evaporitic facies grade upward into purely carbonate facies (Table 1; Figs. 5A, 6B–D). Evaporitic facies within any one cycle consist of ~80% gypsiferous dolomudstones and ~20% massive gypsum (confirmed by X-ray diffraction). Overlying carbonate facies consist of bioturbated wackestone and/or peloidal, miliolid packstone/grainstone. The packstone/grainstone exhibits low-angle cross-bedding and commonly is overlain by mechanically deposited dololaminites and/or cryptagal dololaminites (Fig. 6E). The contact between carbonate facies and overlying evaporitic facies is typically sharp, whereas transitions from evaporitic facies into carbonates are gradational. The asymmetric arrangement of lithofacies in evaporitic cycles and the nature of facies transitions are both key criteria for defining meter-scale cyclicity on the Coahuila inner ramp.

Interpretation.—Evaporites deposited in shallow-marine settings are commonly interpreted to have precipitated either on sabkha mudflats (e.g., Wilson 1967; Ruzyla and Friedman 1985; Handford 1991) or subaqueously in shallow lagoons (e.g., Davis and Nassichuk 1975; Sarg 1981; Hovorka 1987; Elliot and Warren 1989; Warren 1989). Our observations suggest that the Coahuila ramp-interior evaporites formed subaqueously because the massive gypsum beds of the ramp-interior cycles do not show features characteristic of sabkha environments. Diagnostic criteria of sabkha evaporites, such as interbedded mudcracked, cyanobacterial mats with displacive gypsum crystals or chicken-wire anhydrite after gypsum-crystal mush (Shinn 1983; Warren and Kendall 1985; Kendall 1992), are absent. Other evidence for a sabkha origin for the ramp-interior evaporites, such as erosional surfaces overlaying by storm-derived detrital carbonates or eolian siliciclastics, is also not apparent. In addition, the arrangement of lithofacies within ramp-interior settings grades upward from subtidal evaporites into high-energy grainstones deposited in a beach/offshore bar setting or into low-energy tidal-flat laminites of a sabkha setting. These upper carbonate facies are disconformably over lain by the basal evaporitic facies of the succeeding cycle. Thus we interpret the massive gypsum beds to have precipitated subaqueously in the central part of a shallow lagoon, on the basis of the lack of subaerial exposure features in evaporitic lithofacies and the gradational transition into overlying shoal or tidal-flat carbonates.

Saltern deposits of widespread extent, such as the Coahuila ramp-interior evaporites, exist only in ancient platforms and have no modern analog (Warren 1989). Holocene examples of regionally limited saltern deposits are the sea-margin salinas of western Australia, Baja California, the Mediterranean, and the Middle East (Warren 1989, 1991). With the exception of Lake MacLeod of western Australia (Logan 1987), these modern saltern environments are only a few kilometers wide.

Cycle Stacking Patterns.—Individual cycles are difficult to trace laterally in Coahuila ramp-interior settings, but cycle stacking patterns reveal larger-scale, high-frequency sequences (HFSs) that can be correlated be-
tween isolated sections (Fig. 5B; Lehmann 1997). Similarly to the arrangement of lithofacies in meter-scale evaporitic cycles, HFSs shallow upward from generally thicker-than-average evaporite-dominated cycles to generally thinner-than-average carbonate-dominated cycles (Fig. 6A). The cycle number and thickness of cycles in individual HFSs can be highly variable from section to section even though the overall upward-shallowing pattern is evident. In the example in Figure 5B, HFS3 contains 8 cycles and is 86 m thick at Sierra Acacita, whereas at Cañon Corazon del Toro only five cycles are recognized and the thickness decreases to 44 m. These lateral changes in the thickness, lithofacies, and number of ramp-interior cycles in HFSs suggest that the Acacita evaporitic lagoon had some subtle bathymetric relief and might have been divided into sub-basins. Even along single depositional surfaces, the distribution of subenvironments was probably a mosaic of brine pans and mudflats, a pattern common in modern shallow evaporitic lagoons (Warren 1989; Warren and Kendall 1985; Kendall 1992). Such depositional variability along individual time lines would have contributed to the internal variability of single HFSs across the Coahuila ramp.

In the example (Fig. 5B), four HFSs constitute a single composite sequence. The ratio of carbonate-dominated cycles to evaporite-dominated cycles within HFS1 through HFS4 increases toward the top of the composite sequence. Uppermost HFS4 is on average the thinnest in the HFS stack and is dominated by tidal-flat facies, reflecting progradation of peritidal carbonate environments over the evaporitic lagoon in response to minimal long-term accommodation. The composite sequence boundary is placed at the top of tidal-flat-dominated cycles in HFS4 on the basis of the relatively abrupt transition into thick evaporite cycles of the overlying composite sequence.

Cupido Peritidal Shelf Lagoon

The broad Cupido shelf lagoon is bounded along its seaward edge by a shelf margin that varies in character along strike (Fig. 4). From the Sierra de Jimulco through the northern part of the Sierra de Parras and continuing eastward into the main Sierra Madre Oriental near Sallitio (Figs. 1, 4A), the shelf margin is composed of a fringe of high-energy grainstone shoal deposits. The margin makes a sharp dogleg northward where it changes to rudist and coralline reefal facies along the gulfward side of the platform (Wilson 1975; Conklin and Moore 1977; Wilson and Pialli 1977; Wilson et al. 1984; Goldhammer et al. 1991).

The grainstone shoal margin in the northern Sierra de Parras is dominantly composed of peloids and ooids but exhibits subordinate layers (1–5 m thick) of caprinid and requienid rudists (Table 2). Shool architecture consists of large-scale, progradational, sigmoidal cliniforms dipping up to 25° to the south–southwest. The contiguous shool margin and reef margin of the Cupido platform formed a physical barrier separating a peritidal shelf lagoon to the north and west from a deep-water, low-energy shelf to the south and east (Lower Tamaulipas Formation).

Cupido shelf-margin shool and reefal facies are overlain by variable thicknesses of peritidal lithofacies, which are interpreted to have developed on the broad, low-energy shelf lagoon in the lee of the margin (Fig. 4A). The thickness of peritidal lithofacies ranges from 400 to 660 m along the north side of the Sierra de Parras. Peritidal lithofacies form cyclic arrangements similar to those recognized throughout the stratigraphic record (Pratt et al. 1992). The thickness of individual peritidal cycles in the Cupido Formation in the Sierra de Parras ranges from 0.5 to 28.5 m with an average of 4.9 m (total of 686 measured cycles). More than 90% of the peritidal cycles are thinner than 10 m.

Lithofacies transitions within Cupido peritidal cycles are gradational and progressively fine upward (Table 2; Figs. 7, 8). Contacts between adjacent cycles are typically sharp. A thick-bedded to massive peloidal grainstone forms the basal lithofacies of a typical Cupido peritidal cycle and commonly contains whole to fragmental caprinid and requienid rudists. Bioerosion and lime mud content increase upward in the basal unit, and the carbonates become lighter gray because of increasing amounts of dolomite. Intermediate facies are commonly wackestones containing requienid rudists and *Chondrodonta* bivalves; these wackestones fine upward to a structureless/fenestral dolomudstone. Calcite pseudomorphs after gypsum may be present in the mudstones. Commonly, cryptagal laminates overlie structureless/fenestral mudstones, capping the cycle. The laminates are mudcracked, contain rip-up clasts, and rarely exceed 0.5 m in thickness (Fig. 8F). The mudstone or laminate caps are sharply overlain by basal grainstone of the overlying cycle.

Interpretation.—Evidence for upward shallowing within a Cupido peritidal cycle is provided by (1) upward decrease in shallow-subtidal components, such as ooids, shell fragments and intraclasts; (2) upward transition from a normal marine faunal association with caprinids, milliolid, and green algae to a more restricted requienid–*Chondrodonta* faunal association; and (3) capping lithofacies that exhibit calcite pseudomorphs after gypsum, mudcracks, and rip-up clasts, indicating semiarid conditions and episodic subaerial exposure. The sharp contact between the top of a peri-
A) Typical Coahuila ramp-interior cycles

- Cryptalgal laminit (Fig. 6E)
- Skeletal, peloidal packstone/grainstone with milioiid and orbitolinid forams and detrital carbonate and gypsum, low-angle cross-lamination (Fig. 6D)
- Bioturbated wackestone
- Massive gypsum, laminated with mm-thick, gray carbonate-mud layers (Fig. 6C)
- Homogeneous lime mudstone or dolomite intermixed with fine crystalline gypsum (Fig. 6B)

B) Stacking patterns of ramp-interior cycles

Cycle Stacking Patterns.— Peritidal cycles of the Cupido shelf lagoon stack into intermediate-scale high-frequency sequences (HFSs) that can be correlated between isolated sections in the Sierra de Parras (Fig. 7B; Lehmann 1997). The number of cycles within HFSs is variable, but each HFS is distinguished by vertical stacking patterns of generally thicker-than-average, subtidal-dominated cycles low in each HFS, to generally thinner-than-average, tidal-flat-dominated cycles high in each HFS. In the example in Figure 7B, four HFSs stack into one composite sequence. The lowermost HFS in this composite sequence is the thickest of the four (50–130 m), contains the greatest number of meter-scale cycles of all four HFSs, and exhibits a high percentage of subtidal facies. Overlying HFSs within the composite sequence thin upward with the youngest HFS being the thinnest (20–45 m), containing the least number of cycles, and exhibiting the highest proportion of tidal-flat facies. The upper composite sequence boundary is defined at the top by thin peritidal cycles that are immediately overlain by thick subtidal facies of the base of the overlying composite sequence.

These HFS stacking patterns are interpreted to reflect a long-term com-
Fig. 6.—A) Outcrop of ramp-interior cycles, west side of Sierra Acatita. Lighter-weathering units are thicker-than-average evaporite-dominated cycles, and darker-weathering units are thinner-than-average carbonate-dominated cycles. B) Basal lithofacies of ramp-interior cycles: homogeneous, gypiferous mudstone with intercalated massive gypsum beds. C) Detailed view of massive gypsum interbed within basal lithofacies of cycles. D) Low-angle cross-laminated, peloidal, orbitolinid grainstone forms middle to upper parts of typical ramp-interior cycles. E) White, millimeter- to centimeter-scale, laminated dolomudstone with moldic porosity commonly forms cap of ramp-interior cycles.
Table 2.—Description and interpreted depositional environments of Cupido peritidal shelf-lagoon and shelf-margin lithofacies

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Stratigraphic Association</th>
<th>Component Grains and Fossils</th>
<th>Sedimentary and Diagenetic Features</th>
<th>Interpreted Depositional Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimally bioturbated wackestone</td>
<td>Up to 0.5 m thick; commonly overlies structureless/fenestral mudstone</td>
<td>Dolomitic silt and mud; cm-thick peloidal grainstone layers intercalated</td>
<td>Cryptalgal laminites; mudcracks; rip-ups; fenestrae; calcite pseudomorphs likely after gypsum; dolomitization</td>
<td>Subtidal; above fair-weather wave base</td>
</tr>
<tr>
<td>Structureless/fenestral mudstone</td>
<td>Up to 8 m thick; thin- to medium-bedded; overlies bioturbated, requienid wackestone</td>
<td>Dolomitic silt and mud, requienids, Chondrula bivalves</td>
<td>Rare bioturbation; fenestrae; calcite pseudomorphs likely after gypsum; dolomitization</td>
<td>Subtidal; above fair-weather wave base</td>
</tr>
<tr>
<td>Bioturbated, requienid wackestone</td>
<td>Up to 15 m thick; massive to thick-bedded; cliff-former, overlies peloidal, skeletal grainstone</td>
<td>Peloids, intraclasts, benthonic foraminifers, miliolids, rudists (mainly requienids), Chondrula bivalves, shell fragments, gastropod Nerinea</td>
<td>Bioturbation; mollified or homogeneous appearance; less common low-angle cross-lamination; burrows preferentially dolomitization</td>
<td>Subtidal; above fair-weather wave base</td>
</tr>
<tr>
<td>Peloidal, skeletal packstone and grainstone</td>
<td>Up to 30 m thick; massive to thick-bedded; cliff-former, overlies peloidal-skeletal grainstone lithofacies</td>
<td>Peloids, ooids, oncoids, green algae, echinoids, shell fragments, gastropod Nerinea, benthonic foraminifers, miliolids, rudists (caprinids and requienids), intraclasts</td>
<td>Cross-bedding; low-angle cross-lamination; bioturbation; common partial dolomitization; less common complete dolomitization</td>
<td>Shallow subtidal; above fair-weather wave base</td>
</tr>
<tr>
<td>Peloidal, skeletal, oolitic grainstone</td>
<td>Thickness ranging from 60 m to 400 m at shelf-margin; massive; extensive cliff-former, overlies mudstone/wackestone and shales and is overlain by peritidal lithofacies</td>
<td>Peloids, benthonic foraminifers, ooids, thickets of rudists up to 5 m thick composed of requienids and caprinids</td>
<td>Large-scale sigmoidal clinoforms downlapping onto underlying mudstones/wackestones and shales; cross-bedding; extensive dolomitization</td>
<td>Subtidal shelf-margin shoal; high-energy; above fair-weather wave base</td>
</tr>
</tbody>
</table>

Cupido and Coahuila Open-Marine Deep Platform

Deep platform lithofacies (Lower/Upper Tamaulipas Formation) are located in the southern part of the Sierra de Parras, the eastern Sierra Madre Oriental between Monterrey and Linares, and in mountain ranges and potreros east of the Sierra de Paila (Table 3; Figs. 2, 4). Foraminiferal wackestones and lime mudstones make up the majority of the rock types in this facies association and typically form monotonous thin- to thick-bedded successions (Figs. 9, 10A). The majority of the allochems in the wackestones and lime mudstones are planktonic foraminifers, ostracodes, calcispheres, and nannocysts, with a subordinate component of echinoderm and rudist fragments.

Regularly spaced firmgrounds and less common hardgrounds interrupt the succession and have been observed at several deep ramp sections in the Upper Tamaulipas Formation (Fig. 9B). Firmgrounds are synsedimentary, lithifluid sea floors, which indicate prolonged phases of nondeposition or slow sedimentation rates (Purser 1969; Bathurst 1971; Bromley 1975; Fürsich 1979). Firmgrounds develop at the early stages of hardground formation and form after an initial bioturbation phase followed by prolonged omission, during which initial compaction, erosion, and a varying degree of cementation take place.

On the Coahuila deep ramp, firmgrounds form irregular surfaces with up to 20 cm relief within monotonous foraminiferal wackestone and lime mudstone facies (Fig. 10B). They are distinguished by a consistent, 30-cm-thick diffuse zone of finely crystalline dolomite directly above the firmground containing subangular to subrounded intraclasts of the underlying nodolomitized foraminiferal wackestone. In contrast, hardgrounds do not show pronounced relief, but rather form a sharp surface that is commonly overprinted by pressure-solution features, such as stylolites and wispy seams containing residues of clay minerals and organic matter (Fig. 10C).

A compilation of published interpretations for Cretaceous meter-scale cycles deposited in subenvironments across shallow carbonate platforms shows eustasy to be the prevailing interpretation as the dominant causal mechanism (Table 4). Data from the Cupido and Coahuila platforms support a similar conclusion, and in a subsequent section we propose a depositional model that illustrates how the same eustatic signal may affect cycle generation in each of the three paleoenvironmental settings. Other processes, however, such as climate change and autogenic shifts in deposition, may have exerted a significant, but likely subordinate, influence on cycle development. Global climate change ultimately controls eustasy, e.g.,
Lower Cretaceous Cyclic Carbonates and Evaporites, Mexico

A) Typical Cupido peritidal cycles

- Cryptagal laminite, mudcracked, rip-up clasts (Fig. 8F)
- Structureless mudstone with calcite pseudomorphs after gypsum (Fig. 8E)
- Bioturbated wackestone/mudstone with requienids and Chondrodonta (Fig. 8C)
- Bioturbated wackestone (Figs. 8C, 8D)
- Peloidal packstone/grainstone with caprinids and requienids (Fig. 8B)

B) Stacking patterns of Cupido peritidal cycles

Fig. 7.—A) Typical Cupido peritidal cycles. B) Stacking patterns of peritidal cycles into high-frequency sequences within a single composite sequence in the Cupido Formation. See Figure 2 for section locations. In general, high-frequency sequences on the Cupido shelf grade upward from shallow subtidal-dominated cycles to peritidal-dominated cycles. Tick marks to right of each section mark cycle boundaries.

by thermal contraction and expansion of sea water and/or melting of glaciers and polar ice caps. However, it is not clear how global climate affects sea level during peak greenhouse times. In addition, regional climatic effects might influence depositional environments independently of these global climatic changes. Therefore, in the following sections climate is discussed separately from eustasy as a controlling factor on cycle development specifically for the Cupido and Coahuila platforms. Furthermore, the scale-independent architectural similarities between meter-scale cycles, high-frequency sequences, and composite sequences on both platforms are used to infer that these causal mechanisms must have been influential over a range of timescales.

Coahuila Ramp-Interior Evaporitic Cycles

Interbedded carbonates and evaporites are commonly cyclically arranged, but the precise mechanisms governing cycle development are difficult to isolate (Kendall 1988, 1992). Any depositional model for evaporitic cycles must incorporate a few fundamental requirements of evaporite formation. Brine concentration and composition are the basic controls on evaporite precipitation and are ultimately influenced by the inflow/outflow ratio to a lagoon or basin (Logan 1987; Kendall 1988). In turn, the hydrology of the lagoon, climate, and relative sea-level fluctuations are critical factors that affect the inflow/outflow ratio. Hydrologic conditions within the restricted interior of the Coahuila ramp were likely governed by exchange across a ramp-crest barrier shoal that separated the open ocean from the lagoonal inner ramp. The two most viable mechanisms contributing to changes in the inflow/outflow ratio across the barrier shoal and the consequent development of Coahuila ramp-interior cycles are climate and eustasy, acting either independently or perhaps in concert with one another. If climate or eustasy acted independently, then each control must be able to explain the upward shallowing and asymmetric arrangement of lithofacies within evaporitic cycles.
A) Typical Coahuila deep-ramp "cycles"

- Firmgrounds with overlying zone of finely crystalline dolomite and intraclasts (Figs. 10A, 10B)
- Bioturbated foraminiferal wackestone and lime mudstone

B) Spacing of firmgrounds and hardgrounds in Upper Tamaulipas Fm.

Climate.—Evaporites form in arid to semi-arid regions where the potential exists that more water leaves a basin or a lagoon by evaporation or surface/subsurface outflow than enters through rainfall or surface/subsurface inflow. The Coahuila carbonate ramp was located at approximately 28° N during the Early Cretaceous (Barron et al. 1981). This is the latitude of modern desert belts where dry, cold air descends in the Hadley cell, absorbs water, and creates ideal conditions for evaporation (Warren 1989). Changes in regional climate, operative over several timescales and perhaps expressed by the intensity and frequency of tropical storms and monsoons, affect the concentration of brines in metahaline lagoons and may initiate
Table 3.—Description and interpreted depositional environments of Cupido and Coahuila deep-platform lithofacies

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Stratigraphic Association</th>
<th>Component Grains and Fossils</th>
<th>Sedimentary and Diagenetic Features</th>
<th>Interpreted Depositional Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foraminiferal wackestone</td>
<td>Thin- to thick-bedded; interbedded with lime mudstone; dominant deep-platform lithofacies</td>
<td>Micro-peloids, intraclasts, planktonic foraminifers, ostracodes, calcispheres, sponges, nannocmids, ammonites</td>
<td>Bioturbation, firmgrounds, hardgrounds, commonly homogeneous, low-angle cross lamination, graded rhythmic lamination, chert nodules</td>
<td>Deep subtidal; oxygenated; below storm-weather wave base</td>
</tr>
<tr>
<td>Lime mudstone</td>
<td>Thin- to thick-bedded; interbedded with foraminiferal wackestone; some 20 cm-thick shale layers intercalated</td>
<td>Planktonic foraminifers, ostracodes, calcispheres, sponges, nannocmids, ammonites</td>
<td>Bioturbation, chert nodules</td>
<td>Deep subtidal; oxygenated; below storm-weather wave base</td>
</tr>
</tbody>
</table>

cyclic shifts from precipitation of evaporites to carbonate deposition (Fig. 11A). In the Coahuila ramp interior, the basal mudstone/gypsum lithofacies of the evaporitic cycles likely formed during arid phases, which promoted concentration of brines and subaqueous precipitation of evaporites. As climate changed toward increased seasonal rainfall and higher humidity, the inflow/outflow ratio increased, slowing evaporation and causing brines to become more dilute. Migration of adjacent carbonate environments over the formerly evaporitic lagoon may have occurred in response to a shift to more normal-marine water composition (independently of any change in base level). Shoolwater packstone/grainstones and peritidal laminites de-
posited on top of evaporitic facies in ramp-interior cycles may record the gradual transition from hyperaridity to less arid conditions. The now-peritidal Coahuila lagoon must have undergone a nondepositional lag time coincident with a return to more arid conditions to produce the sharp contact between tidal-flat carbonates of the cycle cap and overlying saltern evaporite facies of the succeeding cycle. During this transgressive phase, the lagoon subsided continuously and the earliest evaporites precipitated within lime muds or as massive gypsum beds. Early evaporitic cements might have hydrosealed the lagoon substrate, further enhancing precipitation of thick accumulations of evaporites.

As sea-level rise slowed, the ramp crest and marginal tidal-flat facies tracts prograded over the lagoon, depositing high-energy grainstones and tidal-flat facies on top of evaporitic lagoonal facies. As all available accommodation space eventually filled, production of carbonate sediment slowed. Local brine pans may have remained in the platform interior, on the basis of environmental mosaics common to modern evaporitic settings. After a nondepositional lag time and subsequent eustatic rise, the ramp crest aggraded in response to increased accommodation and once again formed a restricted lagoon in which subtidal evaporite lithofacies of the overlying cycle were deposited. A similar model of “transgressive evaporite” and “regressive carbonate” was proposed by Tucker (1991) for the Upper Permian (Zechstein) of northeast England and the North Sea.

Cupido Peritidal Cycles

Climate.—Orbitally driven climate variations affecting deep-ocean sedimentation are well documented for the Cretaceous greenhouse world (de Boer 1982; Schwarcz and Fischer 1982; Herbert and Fischer 1986), but climatic variability is difficult to recognize on shallow carbonate platforms. Mutti and Weisert (1995) were able to identify several sedimentologic and diagenetic features within individual bed sets of Triassic carbonates forming on the Cupido shelf lagoon would be expected to have exhibited much less sedimentologic response to long-term changes in relative rainfall. Peritidal sedimentation would instead have been more directly influenced by local or regional surface temperature changes that would have affected the productivity of carbonate-secreting organisms. Hardie (1986)
proposed a model whereby carbonate production by shallow-marine organisms decreases during cooler periods and increases during warmer periods. Inorganic precipitation would also be affected by changes in the solubility of CaCO₃ polymorphs with changes in ambient water temperature. In Hardie’s model, the greater part of the deposition within individual peritidal cycles would occur during warm phases when carbonate production was high in the lagoonal “factory”, with this sediment actively redistributed onto tidal flats (Fig. 12A). With cooling of the atmosphere–ocean system, aggradation and progradation would slow considerably and subsidence would take over as the dominant process, resulting in long-term nondeposition and progressive flooding of the tidal-flat cap. This model is difficult to test but should not be discounted as a potential influence on peritidal cycle generation, especially in concert with the abundant evidence for climatic control on surface productivity of Cretaceous open oceans and the resulting high-resolution pelagic record of cyclicity throughout the Tethys.

Eustasy.—Low-amplitude, high-frequency eustatic fluctuations are the likely primary control on the formation of up to 140 consecutive meter-scale peritidal cycles deposited on the Cupido carbonate shelf. The fundamental model relating eustatic sea-level fluctuations to the development of individual peritidal cycles has been extensively detailed in the literature (e.g., Grotzinger 1986; Koerschner and Read 1989; Goldhammer et al. 1990; Goldhammer et al. 1993; Osleger and Read 1991) and is diagrammatically expressed in Figure 12B.

We suggest that eustatic fluctuations were of low amplitude, because slower rates of eustatic change accompanying low amplitudes would have permitted tidal flats to track sea level, resulting in cycles with relatively thin subtidal bases and thick intertidal caps (Read et al. 1986; Koerschner and Read 1989), similar to those formed on the Cupido carbonate platform. In contrast, a high-amplitude sea-level signal would have left tidal flats stranded and produced subtidal-dominated cycles capped by disconformities similar to those of the Plio-Pleistocene of Florida and the Bahamas (Perkins 1977; Beach and Ginsburg 1980). A minimum estimate of sea-level amplitude is given by the average cycle thickness, and thus we estimate 5–10 m as a reasonable minimum amplitude.
LOWER CRETACEOUS CYCLIC CARBONATES AND EVAPORITES, MEXICO

A. Cupido peritidal shelf-lagoon

![Flow diagram illustrating environmental responses to climate change](https://example.com/flow_diagram.png)

CLIMATE CHANGE

- Variation in atmosphere-ocean temperature
- Oceanographic circulation

- Higher ocean temperatures
- Lower ocean temperatures

- Enhanced organic productivity & inorganic carb. precipitation
- Suppressed organic productivity & inorganic carb. precipitation

- Active aggradation & progradation
- Reduced sediment accumulation

- Carbonate deposition
- Non-depositional hiatus at cycle cap

B. Colonization of substrate and sediment accumulation

![Subaerial exposure and eustasy](https://example.com/subaerial_exposure.png)

- Tidal flat lithofacies
- Shallow subtidal lithofacies

Coahuila Deep-Platform “Cycles”

Autogenic Processes.—Broad-scale environmental changes, such as fluctuations in sea-surface temperature, salinity, availability of nutrients, predominant wind direction, and thermohaline circulation, exert regional influences on carbonate platform deposition (Schlager 1992, 1993). Changes in sediment supply governed by environmental factors should produce a spatial distribution of large-scale stratal geometries significantly different from those that relative sea-level changes alone would generate. For example, spatial differences in sediment distribution and accumulation have been observed in the Three Creeks area of Andros Island in the Bahamas, where tidal flats are currently prograding on the southwestern side of Andros but are backstepping on the northwestern side because of the dominant northwesterly winter storm track in the Bahamas (Gebelein 1974). The influence of windward–leeward orientation of the Cupido shelf margin relative to dominant current, wave, and wind patterns may have exerted a critical autogenic control on margin composition and architecture across the interior shelf lagoon (Fig. 4A). The reefal Cupido margin flanking the eastern edge of the platform faced windward toward the open Gulf and likely experienced strong wave energy and high rates of biologic productivity, comparable to many modern east-facing reef margins (e.g., Bahamas, Belize, Great Barrier Reef). The southern shoal margin of the Cupido platform, oriented perpendicular to the open Gulf, may have been dominated by longshore currents and suppressed wave and wind energy, resulting in the south-to-southwest migration of sand shoals and general absence of organic buildups. These windward–leeward effects might have controlled the migration direction of tidal flats on the Cupido shelf lagoon. Peritidal cycles may be well developed in low-energy leeward settings where sediment accumulation exceeds sediment removal on tidal flats, resulting in progradational geometries. Conversely, in laterally adjacent environments facing major storm-track orientations, the balance may be tipped toward greater sediment removal, resulting in poorly developed peritidal cycles with thin or absent tidal-flat caps. This autogenic scenario can partially explain the difficulty in correlating individual cycles from one section to another on the Cupido platform (and many other Phanerozoic platforms).

Coahuila Deep-Platform “Cycles”

Autogenic Processes.—Heterogeneous mudstone and wackestone interbedded with firmgrounds and hardgrounds on the Coahuila deep ramp reflect the alternation of depositional and nondepositional episodes. The for-
formation of firmgrounds and hardgrounds is a common background process on many modern carbonate platforms (Bathurst 1971; Schlager and James 1978; Mullins et al. 1980; Betzler et al. 1995). They are generated under conditions of slow sedimentation that permit precipitation of submarine cements along the sediment–water interface. Water depth, sedimentation rate, temperature, organic productivity, sediment composition, petrophysical characteristics, and grain size are all important factors influencing the diagenetic potential of deep-water sediment (Schlanger and Douglas 1974; Kendall and Schlager 1981). In addition, oceanic currents, prevailing storm-track orientations, and trade-wind-driven currents all may contribute toward creating the right conditions for firmground/hardground formation. The Coahuila deep ramp (Upper Tamaulipas Formation) appears to have been an areally extensive region of low-energy, low-volume sedimentation with no apparent physiographic barriers separating it from the open ancestral Gulf (Fig. 4B). Oceanic currents or prevailing storm currents originating in the open Gulf could have swept unimpeded across the Coahuila deep ramp (~50–200 m deep), generating cemented surfaces in a random areal distribution, as well as randomly through time. The wide variety of interacting factors that control sedimentation rates on deep platforms is complex and generally unpredictable, so any model for cyclicity on deep platforms such as the Coahuila is inherently speculative (Fig. 13A).

Firmgrounds and hardgrounds may be traceable over thousands of square kilometers (Bromley and Gale 1982) or, conversely, may die out across a few tens to hundreds of meters (Wilson and Palmer 1992). The difficulty in correlating individual firmgrounds or hardgrounds between sections across the Coahuila deep ramp (Fig. 9B) illustrates the limited lateral distribution and suggests that their origin may simply be due to local, ambient environmental conditions. Firmgrounds and hardgrounds preferentially form on more permeable and porous sediment surfaces and can therefore be regarded as “facies selective” features (Kendall and Schlager 1981), suggesting that the spatial distribution of firmgrounds and hardgrounds may also be an artifact of the permeability characteristics of the substrate.

Eustasy.—Formation of firmgrounds and hardgrounds has been attributed to both rapid sea-level rises (Kendall and Schlager 1981; Sarg 1988; Fürsich et al. 1992) and sea-level falls (James and Bone 1991; Martire 1992; Eberli et al. 1995). Long-term rises lead to slow sedimentation rates and condensed sections in which firmgrounds and hardgrounds are abundant (Sarg 1988). During long-term falls, firmgrounds and hardgrounds form along the zone of wave abrasion near fair-weather or storm wave base, where the substrate is swept clear of sediment and circulation of water through the sediment surface is enhanced (Osleger 1991; James and Bone 1991; Eberli et al. 1995). The firmgrounds and hardgrounds of the Coahuila
Fig. 14.—Schematic model illustrating the dominant variables acting upon a composite platform representing the three main paleoenvironmental settings of the Cupido and Coahuila shallow platforms. Also shown are critical processes operating contemporaneously in Tethyan deep basinal settings.

DEPOSITIONAL MODEL

The previous section on controlling mechanisms illustrates how climate change, autogenic processes, and eustasy may individually affect the generation of meter-scale cycles on the Cupido and Coahuila platforms (as well as other greenhouse platforms). The ideas and models presented in the previous discussion, constrained by the field data from the Cupido and Coahuila platforms, lead to an integrated, qualitative depositional model (Fig. 14) in which eustasy is the dominant allogenic control with a significant, but subordinate, overprint generated by regional climate change and autogenic processes. Additional indirect support for eustasy as the primary control on development of meter-scale cycles is provided by the scale-independent architecture of all genetic units, interpreted to reflect accommodation change at a range of temporal scales.

In essence, the schematic depositional model (Fig. 14) simplifies the two platforms into a single composite two-dimensional profile that illustrates how individual meter-scale cycles may develop in unique environmental settings during low-amplitude, high-frequency pulses of sea-level change. During each sea-level rise, the Cupido and Coahuila platform margins likely aggraded and narrowed, maintaining their vertical growth to match the newly generated accommodation. Tidal flats were constrained to a narrow belt in the lee of the margins, with subtidal conditions prevailing across the platform interiors. Deposition in the Cupido shelf lagoon during sea-level rise was characterized by a variety of shallow-subtidal carbonate lithofacies, whereas gypsiferous mudstones and massive gypsum dominated deposition in the Coahuila ramp interior. In the deep waters surrounding both platforms, sedimentation rates potentially decreased during sea-level rises to the point that omission surfaces locally developed on the sea floor.

With each individual episode of sea-level fall and consequent accommodation decrease, the Cupido and Coahuila platform margins prograded, accompanied by an expansion of the peritidal belt. Tidal-flat caps developed over subtidal carbonates on the Cupido shelf, whereas high-energy grainstones or tidal-flat laminates were deposited over evaporitic lithofacies in the Coahuila ramp interior. Cycle development was likely spatially variable, influenced by preexisting relief, differential subsidence, and the ambient environmental conditions across the broad platforms. Sub-basins filled with concentrated brines may have remained on the Coahuila ramp interior, precipitating evaporites coeval with prograding tidal flats. The Cupido shelf probably appeared as a mosaic of actively prograding tidal flats and adjacent subtidal lagoons during low-accommodation phases, perhaps because of storm-track orientation controlling the distribution of sediment. In the deep waters surrounding both platforms, muddy carbonates may have accumulated as hemipelagic sedimentation was enhanced by overproduction on the shallow platform and progradation of the platform margins, resulting in redistribution of sediment out to the deep platform.

Superimposed on the stratigraphic record of sea-level fluctuations are countless sedimentologic effects of autogenic environmental “noise” inherent to the depositional setting. As discussed, autogenic noise may be generated by variations in carbonate production and dispersal, intensity and frequency of tropical storms and monsoons, thermohaline circulation patterns, and ambient ocean chemistry and temperature, all potentially interacting in a series of feedback loops. This autogenic overprint on the stratigraphic record may be influenced by regional or global climate change. Whatever the precise connection, autogenic and climatic processes interacted to generate laterally variable physiographic and oceanographic conditions on the Cupido and Coahuila carbonate platforms, contributing to the lateral complexity of cycle distribution. The overall hierarchy of cyclicity recorded in these Cretaceous platforms exhibits clear evidence for accommodation change as the primary control, however, underlying the overprint of autogenic and climatic controls.

DISCUSSION

Cretaceous stratigraphic cyclicity is recognized in a spectrum of depositional settings. Compilations of published data on Cretaceous meter-scale
cyclicity (Tables 4, 5) permit a broad subdivision into (1) shallow-subtidal, peritidal, and evaporitic cycles deposited in a variety of subenvironments on shallow carbonate platforms, and (2) hemipelagic and pelagic cycles deposited in foredeeps and deep ocean basins. Shallow-subtidal, peritidal, and evaporitic cycles are predominantly interpreted to have formed in response to relative sea-level fluctuations, usually driven by eustasy. This interpretation is typically based on the asymmetric, upward-shallowing arrangement of lithofacies within shallow-marine cycles, inferred to reflect an initial rapid increase in accommodation followed by a gradual and progressive decrease in accommodation.

Cretaceous hemipelagic and pelagic cycles are typified by (1) well- bedded chalk or limestone alternating with marl or shale, or (2) alternations of chalk, omission surfaces, and winnowed horizons. These deep-water cycles are generally considered to have been ultimately controlled by climate variations, frequently interpreted as Milankovitch-driven, that affect ocean-surface productivity, deep-marine oxygenation levels, bottom-current strength, and continental runoff of nutrient-rich sediment (references in Table 5; Fig. 14). Convincing evidence for the precession and eccentricity signals of Milankovitch orbital origin has been documented from studies of pelagic strata of Barremian to Cenomanian age in northern and central Italy (e.g., de Boer 1982; Herbert and Fischer 1986; Fischer et al. 1991; Herbert et al. 1995). The Aptian and Albian part of the Italian pelagic succession (Piobbico core) is coeval with both evaporitic and peritidal cycles of the Cupido and Coahuila platforms. The temporal overlap of both shallow-marine and deep-marine stratigraphic cyclicity across a large area of the world supports the presumption that climatic changes driven by orbital variations in the Milankovitch frequency band are recorded in shallow-marine as well as deep-marine depositional settings.

A significant problem exists, however, in generating eustatic oscillations, the primary control on cycle development on shallow carbonate platforms, by climatic change in greenhouse worlds when continental glaciers were absent. Combinations of climate-driven processes that affect sea level may be necessary to generate eustatic oscillations, required to form Cretaceous shallow-marine cycles.

(1) Thermal expansion and contraction of ocean water responding to global changes in sea-surface temperatures might cause geologically significant sea-level changes. An increase of 1°C throughout the water column would increase sea level by about 1 m (Donovan and Jones 1979). The dramatic decadal-scale changes recognized in the Quaternary ice record (Dansgaard et al. 1993), when surface temperature changes of 10–20°C occurred over geologically instantaneous time spans, attest to the potential of rapid changes in the volume of ocean water and the resulting effects on sea level.

(2) Even though major continental glaciations were absent during the
LOWER CRETACEOUS CYCLIC CARBONATES AND EVAPORTES, MEXICO

Cretaceous (Barron 1983), small ice caps or alpine glaciers may have existed. Global falls in sea level seem to coincide with cooler temperatures recorded in oxygen isotopes of Cretaceous sedimentary rocks, which suggest that minor glaciations in the 10–5 year range existed during Cretaceous greenhouse time (Weissert and Lini 1991). Cretaceous dropstone deposits found in Australia, Arctic Canada, Siberia, and Alaska indicate that seasonal ice rafting existed (Froes and Francis 1988). Melting of alpine glaciers and small ice caps has produced estimated sea-level rises of up to 5 cm within the last century (Meier 1984; Wigley and Raper 1987). Although these changes are relatively small and highly variable in the short term, when extrapolated to the 10–3 to 10–5 year range they might cause sea-level changes of several tens of centimeters to a few meters.

3. Climate-driven changes in water storage volume in groundwater and lakes (e.g., monsoonal rainfall) have been calculated to potentially produce 2–8 m changes in sea level (Jacobs and Sahagian 1995). The Tethyan distribution of continents around the Cretaceous equator should have generated a monsoonal climate (Barron et al. 1995), and some of the remnant rift basins created during the breakup of Gondwana might have provided the necessary storage volume for increased seasonal rainfall. Thus, some combination of thermal expansion and contraction of ocean water, waxing and waning of small ice caps and alpine glaciers, and changes in the storage capacity of aquifers and lakes, all governed by climatic changes and perhaps driven by Milankovitch rhythms, could collectively have generated the low-amplitude eustatic fluctuations proposed as the direct control on cyclostratigraphy of Lower Cretaceous platforms of northeastern Mexico.

CONCLUSIONS

1. Meter-scale cycles occur in three different paleoenvironmental settings of the Lower Cretaceous Cupido (Barremian–Aptian) and Coahuila (Albian) carbonate platforms of northeastern Mexico: restricted evaporitic lagoon, peritidal shelf lagoon, and low-energy deep platform. These meter-scale cycles stack into intermediate-scale high-frequency sequences and large-scale composite sequences that can be correlated across the Cupido and Coahuila platforms. On the basis of similar vertical arrangements of lithofacies, these larger-scale genetic units are fundamentally macroscale versions of meter-scale cycles.

2. Regional climate change, autogenic processes, and eustasy likely interact to generate laterally variable meter-scale cycles. The scale-independent architecture of all genetic units, interpreted to reflect a composite history of accommodation change, permits the inference that low-amplitude, high-frequency eustatic changes were the primary control on meter-scale cycle development. Thus, the qualitative depositional model proposed to explain cyclicity on the Cupido and Coahuila platforms is based upon eustasy as the dominant allogenic control with a significant, but subordinate, overprint generated by regional climate change and autogenic processes.

3. Well-documented evidence from Barremian–Cenomanian pelagic cycles strongly indicates that Milankovitch-driven climatic changes operated during the Early Cretaceous. Contemporaneous shallow-marine cyclicity in several locations suggests that these climatic changes may have had globally widespread effects. We propose that Milankovitch-driven global climatic changes produced low-amplitude, high-frequency eustatic fluctuations through a combination of processes to produce meter-scale cycles across the Cupido and Coahuila carbonate platforms, and perhaps on other Lower Cretaceous shallow-marine platforms as well.

ACKNOWLEDGMENTS

We give our special thanks to James Lee Wilson and Bill Ward, who introduced us to the field area and discussed many of the findings of this paper. Wolfgang Stinnesbeck (Universidad Autónoma de Nuevo León) and Paul Enos (University of Kansas) also helped us to better understand the stratigraphy of northeastern Mexico.

We are grateful to the late Dr. William Sitter (U.S.G.S., Menlo Park) and Dr. José Longoria (Florida International University) for identifying planktonic foraminifers, Dr. Annie Arnaud-Vanneau (University of Grenoble, France) for identifying benthi- conic foraminifers, Dr. Keith Young (University of Texas) for classifying ammonites, and Dr. Timothy Bralower (University of North Carolina) for identifying nanococcoliths. Scott Edwards, Raulty Jones, and Brian Murtagh provided able field assistance. This paper benefited from careful reviews by James Lee Wilson, Bill Ward, and Peter Sadler, and JSR reviewers Mark Harris, Mike Grammar, and Gregor Eberli. Financial support was provided by grants from the University of California Institute for Mexico and the United States, American Association of Petroleum Geologists, Sigma Xi, Geological Society of America, and National Foundation Grant EAR-9417872.

REFERENCES

Barron, E.J., Arthur, M.A., and Aruffo, E.G., 1985, Cretaceous rhythmic bedding sequence 2–8 m changes in sea level (Jacobs and Sahagian 1995). The Tethyan distribution of continents around the Cretaceous equator should have generated a monsoonal climate (Barron et al. 1995), and some of the remnant rift basins created during the breakup of Gondwana might have provided the necessary storage volume for increased seasonal rainfall. Thus, some combination of thermal expansion and contraction of ocean water, waxing and waning of small ice caps and alpine glaciers, and changes in the storage capacity of aquifers and lakes, all governed by climatic changes and perhaps driven by Milankovitch rhythms, could collectively have generated the low-amplitude eustatic fluctuations proposed as the direct control on cyclostratigraphy of Lower Cretaceous platforms of northeastern Mexico.

CONCLUSIONS

1. Meter-scale cycles occur in three different paleoenvironmental settings of the Lower Cretaceous Cupido (Barremian–Aptian) and Coahuila (Albian) carbonate platforms of northeastern Mexico: restricted evaporitic lagoon, peritidal shelf lagoon, and low-energy deep platform. These meter-scale cycles stack into intermediate-scale high-frequency sequences and large-scale composite sequences that can be correlated across the Cupido and Coahuila platforms. On the basis of similar vertical arrangements of lithofacies, these larger-scale genetic units are fundamentally macroscale versions of meter-scale cycles.

2. Regional climate change, autogenic processes, and eustasy likely interact to generate laterally variable meter-scale cycles. The scale-independent architecture of all genetic units, interpreted to reflect a composite history of accommodation change, permits the inference that low-amplitude, high-frequency eustatic changes were the primary control on meter-scale cycle development. Thus, the qualitative depositional model proposed to explain cyclicity on the Cupido and Coahuila platforms is based upon eustasy as the dominant allogenic control with a significant, but subordinate, overprint generated by regional climate change and autogenic processes.

3. Well-documented evidence from Barremian–Cenomanian pelagic cycles strongly indicates that Milankovitch-driven climatic changes operated during the Early Cretaceous. Contemporaneous shallow-marine cyclicity in several locations suggests that these climatic changes may have had globally widespread effects. We propose that Milankovitch-driven global climatic changes produced low-amplitude, high-frequency eustatic fluctuations through a combination of processes to produce meter-scale cycles across the Cupido and Coahuila carbonate platforms, and perhaps on other Lower Cretaceous shallow-marine platforms as well.

ACKNOWLEDGMENTS

We give our special thanks to James Lee Wilson and Bill Ward, who introduced us to the field area and discussed many of the findings of this paper. Wolfgang Stinnesbeck (Universidad Autónoma de Nuevo León) and Paul Enos (University of Kansas) also helped us to better understand the stratigraphy of northeastern Mexico.

Received 1 November 1996; accepted 9 February 1998.