Volcanoes and Rock Evolution

~A Primer on Igneous Rocks~
Igneous rocks are divided into four categories: ultramafic, mafic, intermediate, and felsic. The chart below contains labeled photos of the more common igneous rocks. In order, they trend from high forming temperatures to low forming temperatures, from dark colored rocks to light colored rocks, and from heavy rocks to light rocks. In addition, these rocks evolve from ultramafic, to mafic, to intermediate, to felsic.

~Plate Tectonics, Volcanoes, and Igneous Rock Evolution~
One of the most important ideas in geology is that igneous rocks evolve, and they evolve at convergent and divergent plate boundaries.

With the exception of hot spots (see below) all volcanic activity takes place at convergent and divergent plate boundaries. At divergent plate boundaries ultramafic magma is brought from deep in the mantle toward the surface via convection cells. This material is very hot and flows slowly, at at centimeters per year.
As it approaches the surface, the reduction in pressure allows the rock to partially melt (or fractionally melt). The melt portion (Mafic) is lower in temperature than the unmelted portion (Ultramafic), and it rises to fill the space opening between the diverging plates. This is the creation of new oceanic lithosphere (see Ophiolite Suite). The original rock (parent rock) has been split into two fractions; an ultramafic unmelted residue, and a melted mafic portion. Creation of new oceanic lithosphere involves massive amounts of volcanic activity, typically in the form of fissure volcanoes.

A second fractional melting takes place at convergent plate boundaries (subduction zones). As oceanic lithosphere descends into the mantle it carries sea water with it. The sea water acts as a flux causing the material above the subducting plate to fractionally melt. This produces first Intermediate magmas, and then Felsic magmas, and since these rocks are lighter than mafic magma they float higher in the earth, forming islands and eventually continents (click image for enlargement; or see This Link).
Intermediate and felsic magmas also produce some of the most explosive volcanoes in the world, called composite type volcanoes. Common examples include Mt. Saint Helens, Mt. Rainier, Mt, Vesuvius, Mt. Pinatubo, Santorini, and Mt. Fuji. In fact, all the volcanos that form the Andes mountains, and the Cascade mountains in the northwest U.S. are this type. All thanks to plate tectonics and subduction.

A summary of these igneous evolutionary processes is shown in the diagram below.

A third major category of volcanic activity occurs at hot spots.  Hot spots have little to do with plate tectonics and often  (but not always) occur within plates. They are generated by isolated, stationary, plumes of magma that arise deep in the mantle. Common examples are the shield volcanos of the Hawaiian islands and Yellowstone park. 

Contributed by Lynn Fichter 

Monday, November 17, 2014
Tulsa Web Design    Tulsa Graphic Design     Tulsa SEO    Tulsa Search Engine Optimization