Sulfur Isotopes

Sulfur Isotopes
These isotopes are useful in determining water sources in sulphate-rich sediments and in determining degrees/and types of diagenesis. Volcanogenic S, not included, except as a reference list.

Power Point lecture Topic Click and Link to Lecture
Some of content of lectures
"Sulfur Isotopes" Introduction to use of oxygen isotopes
Sulfur (S) has 25 known isotopes with mass numbers ranging from 26 to 49, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium nuclei, in the so-called alpha process of exploding type II supernovae (see silicon burning).
Other than 35S, the radioactive isotopes of sulfur are all comparatively short-lived. 35S is formed from cosmic ray spallation of 40Ar in the atmosphere. It has a half-life of 87 days. The next longest-lived radioisotope is sulfur-38, with a half-life of 170 minutes. The shortest-lived is 49S, with a half-life shorter than 200 nanoseconds.
When sulfide minerals are precipitated, isotopic equilibration among solids and liquid may cause small differences in the δS-34 values of co-genetic minerals. The differences between minerals can be used to estimate the temperature of equilibration. The δC-13 and δS-34 of coexisting carbonates and sulfides can be used to determine the pH and oxygen fugacity of the ore-bearing fluid during ore formation.
In most forest ecosystems, sulfate is derived mostly from the atmosphere; weathering of ore minerals and evaporites also contribute some sulfur. Sulfur with a distinctive isotopic composition has been used to identify pollution sources, and enriched sulfur has been added as a tracer in hydrologic studies. Differences in the natural abundances can also be used in systems where there is sufficient variation in the 34S of ecosystem components. Rocky Mountain lakes thought to be dominated by atmospheric sources of sulfate have been found to have different δS-34 values from lakes believed to be dominated by watershed sources of sulfate.

Sulfur Isotopes Bibliography

Aharon, P. and Fu, B., 2003, Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chemical Geology, 195 (1) 201-218

Allwood, A.C. Woodward, W., Fischer,  , Grotzinger, J.P., Summons, R.E.,and Eiler, J.M., 2012, Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism   PNAS 2012 ; published ahead of print September 4, 2012

Bao H. M., 2005, Sulfate in modern playa settings and in ash beds in hyperarid deserts: implication for the origin of 17O-anomalous sulfate in an Oligocene ash bed. Chem. Geol. 214, 127–134.

Bergelson, G., Nativ,R., and Bein, A.  1999, Salinization and dilution history of ground water discharging into the Sea of Galilee, the Dead Sea Transform, Israel. Applied Geochemistry 14, 91-118.

Bindeman, I.N., Eiler, J., Wing, B. and Farquhar, J., 2007, Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. Geochimica et Cosmochimica Acta, 71(9), 2326-2343

Canfield, D. E., 2001, Biogeochemistry of Sulfur Isotopes.  Reviews in Mineralogy and Geochemistry 2001, 43 (1), 607-636.

Canfield, D.E, 2004, The evolution of the Earth surface sulfur reservoir. American Journal of Science, 304. 839-886.

Canfield, D.E, 2005, The Early History of Atmospheric Oxygen:  Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 2005. 33, 1–36

Can?eld,D.E., Habicht, K.S. and Thamdrup, B. , 2000, The Archean Sulfur cycle and the Early History of Atmospheric Oxygen. Science  288, 658-661.

Chambers , L. A.  and  Trudingera, P.A., 1979, Microbiological fractionation of stable sulfur isotopes: A review and critique.  Geomicrobiology Journal, 1(3), 249-293.

claypool,  G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., 1980, The Age Curves Of Sulfur And Oxygen Isotopes In Marine Sulfate And Their Mutual Interpretation . Chemical Geology, 28 199—260.

Drever J.I., 1988. The hydrologic cycle. In: The Geochemistry of Natural Waters. 2nd ed.  Englewood Cliffs, NJ: Prentice Hall. 1–14.

Dinur, D., Spiro, B., and Aizenshtat, Z., 1980–1981, The distribution and isotopic composition of sulfur in organic-rich sedimentary rocks. Chemical Geology, v. 31, 37–51.

Farquhar, J., and Wing, B. A., 2003, Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters 213 (2003) 1-13.

Farquhar, J. , Bao, H.M. , and Thiemens, T., Atmospheric influence of Earth’s earliest sulfur cycle, Science 289 (2000) 756-758.

Faure, G. and Mensing, T.M., 2005, Sulfur, Ch. 29, In: Isotopes, Principles and Applications (3rd ed.) 824-853.

Feely, G.W. and Kulp, J.L., 1957, The origin of Gulf Coast salt dome sulfur deposits. Bulleting of American Association Petroleum Geologists, 42, 1802-1854.

Griffith, E. M., Calhoun, M. , Thomas, E. , Bralower, T.. Olivarez Lyle, A. , Lyle, M.  and Paytan A.. 2010,  Marine barite and carbonate accumulation rates spanning the Eocene/Oligocene boundary across the Pacific basin. Paleoceanography, 25, PA3212.

Griffith, E. M. (10/2012). "Barite in the ocean - occurrence, geochemistry and palaeoceanographic applications". Sedimentology (0037-0746), 59 (6), p. 1817.

Guo, Q., Strauss, H., Kaufman, A.J., Stefan Schröder, S.,Gutzmer, J., Wing, B., Baker, M.A., Bekker, A., Jin, Q., Kim, S.-T., and Farquhar, J., 2009, Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology, v. 37 (5), 399-402.

Habicht, K.S., Gade, M., Thamdrup, B. ,Berg, P., Canfeld, D.E., 2002, Calibration of Sulfate Levels in the Archean Ocean. Science, 298, 2372-2374.

Habicht, KS, and Canfield, D.E., 1997, Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61:5351–61.

Habicht, K.S. &  Canfield, D.E., 1996, Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382, 342 – 343.

Halevy, I. 2012, Sulfate Burial Constraints on the Phanerozoic Sulfur cycle. Science 337, 331-334.

Halevy,I., Johnston, D.T., and Schrag, D.P., 2010, Explaining the Structure of the Archean Mass-Independent Sulfur Isotope Record . Science Express, Report.     27 May 2010 / Page 1 / 10.1126/science.1190298.

Halevy,I., Johnston, D.T., and Schrag, D.P., 2010, Explaining the Structure of the Archean Mass-Independent Sulfur Isotope Record . Science, 329, 204-207.

Henneke, E., Luther, G.W. III, DeLange, G.J., and Hoefs, J., 1997, Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, Vol. 61, No. 2, pp. 307-321.

Hoefs, J. (1973). Stable Isotope Geochemistry, Springer-Verlag, Berlin, New York, 140 pp.

Holland, H.D. (1973). Systematics of the isotope composition of sulfur in the oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochim. Cosmochim. Acta, 37, 2605-16.

Hurtgen, M.T.,  Arthur, M.A. and Halverson, G.P., 2005,  Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite, Geology v. 33 no. 1 p. 41-44

Hurtgen, M.T., 2012, The Marine Sulfur cycle, Revisited. Science, 337, 305-306.

Johnston, D.T., Wing, B.A., Farquhar, J., Kaufman, A.J., Strauss, H., Lyons, T.W., Kah, L.C. and Canfield, D.E., (2005). Active microbial sulfur disproportionation in the Mesoproterozoic. Science, 310, 1477-1479.

Johnston, D.T., Farquhar, J., Wing, B.A., Kaufman, A.J., Canfield D.E. and Habicht, K.S., (2005). Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci., 305, 645-660.

Kampschulte, A.  and Strauss, H., 2004, The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chemical Geology 204 (2004) 255–286.

Kaplan, LR., and Rafter, T.A., 1958, Fractionation of stable isotopes of sulphur by Thiobacilli. Science, 127, 517-18.

Kaplan, I.R., and Rittenberg, S.C., 1964, microbial fractionation of sulphur isotopes. 1. Gen. Microbiol., 34, 195-212.

Kasting, J.F., 1993, Earth's Early Atmosphere.  Science  259, 920−926.

Longinelli, A., 1989, Oxygen 18 and Sulphur 34 dissolved oceanic sulphate and phosphate. In: The Marine Environment.  P. Fritz & J.C.Fontes (eds), 219-255.

Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S.R., and Taylor, B.E. 2006, Sulphur isotope evidence for an oxic Archaean atmosphere. Nature, 442 (24), 908-911.

Ono, S., Eigenbrode, J.L., Pavlov, A.A., Kharecha, P., Rumble III, D., Kasting, J.F.,  and Freeman, K.H., 2003, New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth and Planetary Science Letters 213, 15-30.

Paytan, A. and Gray. E., 2012. Sulfur isotope stratigraphy. A Geological Time Scale. In:  F. Gradstein et al. (Eds).The Geologic Time Scale, v.1,  pp.161-180

Paytan , A., Kastner, M., Campbell, D., Thiemens, M.H., 1998, Sulfur Isotopic Composition of Cenozoic Seawater Sulfate. Science , 282 no. 5393,1459-1462. DOI: 10.1126/science.282.5393.1459.

Rees, C.E., Jenkins, W.J., & Monster, J., 1978, The sulphur isotopic composition of seawater.  Geochimica Cosmochimica Acta, 42, 377-382.

Schidlowski,, M., Hayes, J.M.,and Kaplan, I.R.,1983, Isotopic inferences of ancient  of ancient  biochemistries:  carbon, sulphur, hydrogen, and nitrogen, In: Earth’s Earliest Biosphere: It’s Origin and Evolution. J.W. Schopf (ed), Princeton University Press, 149-186.

Seal, R.R. II, 2006, Sulfur Isotope Geochemistry of Sulfide Minerals. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy & Geochemistry, 61,. 633-677.

Sharp, Z., 2007, Ch. 10, Sulfur. In: Principles of Stable Isotope Geochemistry, Pearson Prentice Hall, pp.222-241.

Shen, Y., Buick, R. & Canfield, D.E., 2001, Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77-81.

Stein, M., Starinsky, A. , Agnon, A., Katz, A., Raab, M., Spiro, B., Zak, I.,  2000, The impact of brine-rock interaction during marine evaporite formation on the isotopic Sr record in the oceans: evidence from Mt. Sedom, Israel. Geochimica et Cosmochimica Acta, 64 (12), 2039-2053.

Strauss, H., 1997, The isotopic composition of sedimentary sulphur through time, Palaeo Palaeo Palaeo, 132, 97-118.

Stüeken, E.E., Catling, D.C., and Buick, R., 2012, Contributions to late Archean sulphur cycling by life on land. Nature Geoscience, 5, 722–725.

Thode, H.G. 1991, Sulphur Isotopes in Nature and the Environment: An Overview. IN: Eds. H.R. Krouse and V.A. Grinenko, Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment, Ch 1, 26pp

Thode, H.G., Monster,, J. and Durford, H. B., 1961, Sulphur isotope geochemistry. Geochimica et Cosmochimica Acta, 25, I50 to 174.

Thode, H.G. and Monster, J., 1965, Sulfur isotope geochemistry of petroleum, evaporites, and ancient seas. American Association of Petroleum Geologists, Memoir 4, 367-377.

Urey, H.C. , 1947, The thermodynamic properties of isotopic substances, J. Chem. Soc. (1947) 562-581.

Walker, J.C.G ,1986, Global geochemical cycles of carbon, sulfur and oxygen  Marine Geology, 70 ( 1–2), 159–174.

Watanabe, Y., Farquhar,  J., Ohmoto,  H., 2009, Anomalous Fractionations of  Sulfur Isotopes During Thermochemical  Sulfate  Reduction.  Science  324 no. 5925 370-373, DOI: 10.1126/science.1169289

Woodhead, J.D., Harmon, R.S. and Fraser, D.G., 1987, O, S, Sr, and Pb isotope variations in volcanic rocks from the Northern Mariana islands: Implications for crustal recycling in intra-oceanic arcs.  Earth and Planetary Science Letters 83 (1-4), 39-52.

Wortmann, U.G ., and Paytan, A., 2012, Rapid Variability of Seawater Chemistry Over the Past 130 Million Years. Science, 337(6092):334-336.

Zahnle, K., Claire, M. and Catling, D., 2006, The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4, 71-283.

Sulfur Isotopes and Volcanics Bibliography

Aiuppa A., Federico C., Franco A., Giudice G., Gurrieri S., Inguaggiato S., Liuzzo M., McGonigle A. J. S., and Valenza M. (2005) Emission of bromine and iodine from Mount Etna volcano. Geochemistry, Geophysics, Geosystems 6, doi:10.1029/2005GC000965.

Aiuppa A., Inguaggiato S., McGonigle A. J. S., O'Dwyer M., Oppenheimer C., Padgett M. J., Rouwet D., and Valenza M. (2005) H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for the sulfur budget at volcanoes. Geoch. et Cosmoch. Acta 69 (7), 1861-1871.

Capasso G., D'Alessandro W., Favara R., Inguaggiato S., and Parello F. (2001) Interaction between the deep fluids and the shallow groundwaters on Vulcano island (Italy). J. Volcanol. Geoth. Res. 108, 187-198.

Capasso G., Favara R., and Inguaggiato S. (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island (Aeolian Islands, Italy): an interpretative model of fluid circulation. Geoch. et Cosmoch. Acta 61, 3425-3440.

Capasso G., Favara R., and Inguaggiato S. (2000) Interaction between fumarolic gases and thermal groundwaters at Vulcano Island (Italy): evidences from chemical composition of dissolved gases in waters. J. Volcanol. Geoth. Res. 102, 309-318.

Carapezza M. L., Inguaggiato S., Brusca L., and Longo M. (2004) Geochemical precursors of the activity of an open-conduit volcano: The Stromboli 2002-2003 eruptive events. Geoph. Res. Letters 31, L07620.

Faure and Mensing, 2005

Favara R., Grassa F., Inguaggiato S., and D'Amore F. (1998) Geochemical and hydrogeological characterization of thermal springs in Western Sicily, Italy. J. Volcanol. Geoth. Res. 84, 125-141.

Favara R., Grassa F., Inguaggiato S., and Valenza M. (2001) Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault (Western Sicily). Applied Geochem. 16, 1-17

Favara R., Grassa F., Inguaggiato S., Pecoraino G., and Capasso G. (2002) A simple method to determine the ? 13C content of total dissolved inorganic carbon. Geofisica Internacional 41, 313-320

Giammanco S., Inguaggiato S., and Valenza M. (1998) Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. J. Volcanol. Geoth. Res. 81 , 297-310.

Grassa F., Capasso G., Favara R., Inguaggiato S., Faber E., and Valenza M. (2004) Molecular and isotopic composition of free hydrocarbon gases from Sicily, Italy. Geoph. Res. Letters 31, L06607.

Gugliandolo C., Italiano F., Maugeri T. L., Inguaggiato S., Caccamo D., and Amend J. P. (1999) Submarine hydrothermal vents of the Aeolian islands: Relationship Between microbial Communities and Thermal Fluids. Geomicrobiology Journal 16, 105-117.

Inguaggiato S., Martin-Del Pozzo A. L., Aguayo A., Capasso G., and Favara R. (2005) Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl (Mexico): evidence of gas-water interaction magmatic component and shallow fluids. J. Volcanol. Geoth. Res. 141, 91-108.

Inguaggiato S., Pecoraino G., and D'Amore F. (2000) Chemical and isotopical characterization of fluid manifestations of Ischia Island (Italy). J. Volcanol. Geoth. Res. 99, 151-178.

Inguaggiato S., Taran Y. A., Grassa F., Capasso G., Favara R., Varley N., and Faber E. (2004) Nitrogen isotopes in thermal fluids of a forearc region (Jalisco Block, Mexico): evidence for heavy nitrogen from continental crust. Geochemistry, Geophysics, Geosystems 5, Q12003.

Martin-Del Pozzo A. L., Aceves F., Espinasa R., Aguayo A., Inguaggiato S., Morales P., and Cienfuegos E. (2002) Influence of volcanic activity on spring water chemistry at Popocatépetl Volcano, Mexico. Chemical Geology 190, 207-229.

Sortino F., Inguaggiato S., and Francofonte S. (1991) Determination of HF, HCI and total sulphur in fumarolic condensates by ionic cromotography. Acta Vulcanologica 1, 89-91.

Taran Y. A., Inguaggiato S., Marin M., and Yurova L. M. (2002) Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico. J. Volcanol. Geoth. Res. 115, 329-338.

Woodhead, J.D. , Harmon, R.S., and Fraser, D.G. 1987, O, S, Sr, and Pb isotope variations in volcanic rocks from the Northern Mariana Islands: implications for crustal recycling in intra-oceanic arcs. Earth and Planetary Science Letters, Volume 83, Issues 1–4, May 1987, Pages 39–52.
Useful Thermogenic References
Aharon, P. and Fu, B., 2000, microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico. Geochimica et Cosmochimica Acta, 64(2), 233–246.

Amrani, A. , Lewan, M.D., And Aizenshtat, Z., 2005,  Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb limestone, Israel. Geochimica et Cosmochimica Acta,  69 (22), 5317–5331.

Bailey, N.J.L., Jobson, A.M., and Rogers, M.A., 1973, Bacterial Degradation Of Crude Oil: Comparison Of Field And Experimental Data. Chemical Geology, 11, 203–221.

Cai, C., Li, K., Li, H., and Zhang, B., 2008, Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China. Applied Geochemistry, Volume 23 (8), 2226–2235.

Cai, C., Zhang, C., Cai, Wu, G., Lei, J., Xi, Z. Li, Ma, A., and Chen, L., 2009, Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers. Chemical Geology, 268 (3-4), 197–210.

Cai, C., Hu, W., and Worden, R.H., 2001, Thermochemical sulphate reduction in Cambro–Ordovician carbonates in Central Tarim. Marine and Petroleum Geology,  18 (6), 729–741.

Farquhar, J. and Wing, B.A., 2003, Multiple Sulfur Isotope analyses: Applications in geochemistry and cosmochemistry. Earth and Planetary Science Letters, 213(1-2), 1–13.

Farquhar, J. and Wing, B.A. 2005, The terrestrial record of stable sulphur isotopes: a review of the implications for evolution of Earth’s sulphur cycle, in McDonald, I., Boyce,A. J., Butler, I. B.,Herrington, R. J. & Polya,D.A. (eds), Mineral Deposits and Earth Evolution. Geological Society, London, Special Publications, 248, 167–177.

Farquhar J., Wu, N.P., Canfield D.E., Oduro, H.,  2010, Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal VMS, SEDEX, and MVT deposits, Economic Geology 105: 509–533.

Krouse, H.R., 1977. Sulfur isotope studies and their role in petroleum
exploration. J. Geochem. Explor. 7, 189–211.

Machel, H.G., Krouse, H. R., Riciputi, L.R., and Cole, D.R., 1995, Devonian Nisku Sour Gas Play, A Unique Natural Laboratory for Study of Thermochemical Sulfate Reduction. Ch. 25, In: ACS Symposium Series 612, eds. Murthy A Vairavamurthy & Martin A A Schoonen, “Geochemical Transformations of Sedimentary Sulfur”, pp 439–454.

Machel, H.G., Krouse, H.R., and Sassen, R., 1995, Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Applied Geochemistry, 10, 373–389.

Machel, H.G., 2001, Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sedimentary Geology 140 (1-2), 143 -175.

Oduro, H., Kamyshny, A. Jr, Guo, W., Farquhar,J., 2011, Multiple sulfur isotope analysis of volatile organic sulfur compounds and their sulfonium precursors in coastal marine environments. Mar. Chem 124 (1–4), 78–89.

Ono, S., Eigenbrode, JL, Pavlov, AA, and Kharecha,P., 2003, New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia.  Earth and Planetary Sciences, Earth and Planetary Science Letters 213 (2003) 15–30.

Peters, M., Strauss, H., Farquhar, J., Ockert, C., Eickmann, B., Jost, C.L., 2010 Sulfur cycling at the Mid-Atlantic Ridge: a multiple sulfur isotope approach Chemical Geology, 269, 180–196.

Rooney, M.A., claypool, G.E., and Chung, H.M., 1995, Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chemical Geology, 126 (3–4), 219–232.

Van Stempvoort, D. R. and Krouse, H. R.  1994, Environmental Geochemistry of Sulfide Oxidation, Chapter DOI: 10.1021/bk-1994-0550. ACI Series, Vol. 550. Ch. 29 , 446–480.
Controls of δ18O in Sulfate. IN: Review of Experimental Data and Application to Specific Environments; Editors: C. N Alpers and D. W Blowes.

Wang, Q., 2008, Generation mechanism and control measures for H2S in oil wells, Liaohe Oilfield. Petroleum Exploration and Development, 35 (6), 349–354.

Watanabe, Y., Farquhar, J., and Ohmoto, H., 2009, Anomalous Fractionations of Sulfur Isotopes During Thermochemical Sulfate Reduction. Science, 324, 370-73.

Other Important References
Jassim, S.Z., Raiswell, R.  and Bottrell, S.H.,1999, Genesis of the Middle Miocene stratabound sulphur deposits of northern Iraq.  Journal of the Geological Society, 156 (2), 25-39.

Kajiwara, Y. and Krouse,  H. R, 1971, Sulfur Isotope Partitioning in Metallic Sulfide Systems.  Canadian Journal of Earth Sciences, 8(11), 1397-1408.

Ruckmick, J.C. ,  Wimberly, B.H. and Edwards, A.F., 1979, Classification and genesis of biogenic sulfur deposits. Economic Geology, 74 (2) 469-474.
Thomazo, C., Pinti, D.L., Busigny, V., Ader, M., Hashizume, K., and Philippot, P, 2009, Biological activity and the Earth’s surface evolution: Insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C.R. Paleo  l8, 665–678.  General palaeontology (Palaeobiochemistry)
Tuesday, June 18, 2013
Tulsa Web Design    Tulsa Graphic Design     Tulsa SEO    Tulsa Search Engine Optimization